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OPTIMUM SHAPES OF SPATIAL BODIES WITH A MINIMUM

TOTAL RADIATIVE FLUX TO THE SURFACE

UDC 533.6.11–535.23M. A. Arguchintseva1 and N. N. Pilyugin2

A solution of a variational problem of a slender body with a minimum total radiative heat flux,
moving in a gas with a constant velocity, is constructed. It is found that there are three types of
the transverse contour of the optimum body: a circumference, a star-shaped contour, and a contour
consisting of circle arcs and sectors of straight lines. The radiation parameter affects only the shape
of the longitudinal contour and does not affect the optimum shape of the transverse contour. It is
shown that the use of optimum spatial bodies allows a significant (more than 50%) decrease in the
radiative heat flux to the body surface as compared to bodies of revolution with similar geometric
characteristics.

Introduction. Spacecraft reentry with hypersonic velocities into the Earth atmosphere is accompanied by
intense convective and radiative heating, which may lead to substantial thermochemical destruction of the surface [1].
At high Mach numbers (M > 25–30) and Reynolds numbers, heat is transferred to the body surface mainly by
radiation. One method of decreasing heat fluxes toward the body is the choice of the optimum shape of the reentry
vehicle and its flight trajectory [2–4]. Most papers dealing with studying optimum bodies in terms of the heat flux
considered problems of optimum longitudinal contours of axisymmetric and plane bodies [2]. Using the method
of local variations, Arguchintseva and Pilyugin [4] found the optimum shapes of three-dimensional bodies with a
given elliptic base cross section and a minimum total (convective and radiative) heating of the surface along the
trajectory. It was shown that the total heat flux to the surface of a three-dimensional body is 30% lower than for
an axisymmetric configuration under identical reentry conditions.

However, the issues of optimization of spatial configurations in terms of heat transfer are still poorly stud-
ied [3]. Therefore, it is of interest to consider the problems of finding optimum shapes of transverse contours of
three-dimensional bodies from the viewpoint of minimization of the radiative heat flux.

1. Formulation of the Problem. We consider hypersonic motion of a three-dimensional body in a cylin-
drical coordinate system (r, θ, z) with the origin at the body apex and the z axis directed opposite the translational
motion of the gas flow; θ is the angle formed by the radius r and the plane (x, z) of the Cartesian coordinate system
(x, y, z).

We confine ourselves to consideration of a class of surfaces possessing homothetic properties. In this case,
each cross section of the body perpendicular to the z axis should be geometrically similar to the base cross section.
The surfaces of such bodes are described by the equation

f(r, θ, z) = r − ϕ(z)R(θ) = 0,

where the functions ϕ(z) and R(θ) determine the longitudinal and transverse contours of the body, respectively.
We assume that the heat flux on the body surface depends on the local slope of the surface θw, i.e., on the

angle between the external normal to the surface element and the free-stream velocity vector. Dependences of this
kind are obtained by various methods for hypersonic flows around axisymmetric [5, 6] and plane [7] bodies. In the
limiting case of a strongly radiating gas, the radiative flux to the spatial body is qR ∼ cos3 θw [8]. More generic
power dependences of radiative heat fluxes to spatial bodies on cos θw were considered in [1, 9] and were confirmed
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by the numerical solution of problems of hypersonic flow around some spatial bodies [10, 11]. It was proved [9] that,
if a three-dimensional body differs little from an axisymmetric one and the cross-sectional areas of these bodies
are identical, then, in accordance with the “rule of areas,” it is possible in some cases to recalculate heat fluxes to
spatial bodies from the corresponding values of radiative fluxes to axisymmetric bodies [1].

Thus, we may assume that the dependence of the radiative heat flux on the local slope of the body surface is
also valid for spatial bodies. As is noted above, this is confirmed in a number of limiting cases [1, 8, 9]. In addition,
there are no other approximations of the distribution of radiative heat fluxes to spatial bodies in the currently
available literature. In the present paper, the distribution of the local radiative heat flux qR over the surface of a
three-dimensional body was used in the first approximation in the form [1]

qR = qR0(−〈n, ez〉)m, 〈n, ez〉 = −ϕ̇(z)R(θ)/[1 + (Ṙ(θ)/R(θ))2 + (ϕ̇(z)R(θ))2]1/2,

where qR0 is the coefficient of radiative heat transfer at the critical point of the body, m is the radiation parameter
determined by the emissivity of the medium and gas velocity (m ∈ [3; 10]) [10, 11], n is the unit vector of the
external normal to the surface element, and (er, eθ, ez) are the unit vectors of the cylindrical coordinate system.

Note, similar dependences (with the corresponding values of the power m) are obtained in some other cases
of heat transfer in a hypersonic flow around spatial bodies: for convective heat fluxes [12–14], in rarefied flows
[15, 16], and also under the action of intense laser radiation on the body [17]. Therefore, the results of the present
study can be used (as a first approximation) for other cases of spatial heat transfer.

Integrating the local radiative heat flux qR along the side surface of the body S, we obtain the formula for
the radiative heat-transfer coefficient

CR =
1
L2

∫ ∫
S

qR
qR0

ds, ds =
r

〈n, er〉
dθ dz, 〈n, er〉 =

1
[1 + (Ṙ(θ)/R(θ))2 + (ϕ̇(z)R(θ))2]1/2

,

where L is a prescribed body length along the z axis. In dimensionless variables [ζ = z/L and ρ(θ) = R(θ)/L], the
formula for the radiative heat-transfer coefficient acquires the form

CR =

2π∫
0

1∫
0

ϕ(ζ)ϕ̇m(ζ)ρm+1(θ) dθ dζ
[1 + (ρ̇(θ)/ρ(θ))2 + (ϕ̇(ζ)ρ(θ))2](m−1)/2

.

In the class of slender bodies [(ϕ̇(ζ)ρ(θ))2 � 1], the expression for CR can be represented as the product of the
functionals J1(ϕ) and J2(ρ) depending on the shape of the longitudinal [ϕ(ζ)] or transverse [ρ(θ)] contours of the
body, respectively:

CR = J1(ϕ)J2(ρ), J1(ϕ) =

1∫
0

ϕ(ζ)ϕ̇m(ζ) dζ, J2(ρ) =

2π∫
0

ρ2m(θ) dθ
[ρ2(θ) + ρ̇2(θ)](m−1)/2

. (1.1)

Thus, the initial problem of finding the shape of a three-dimensional body, which minimizes the radiative heating of
the surface, can be divided into two subproblems: 1) on the optimum longitudinal contour of the body; 2) optimum
transverse contour of the body.

As restrictions imposed onto the body surface, we consider the following isoperimetric conditions:
— on the given volume of the body V ,

1∫
0

ϕ2(ζ) dζ

2π∫
0

ρ2(θ) dθ =
2V
L3

; (1.2)

— on the area S of the wetted body surface,
2π∫
0

1∫
0

ϕ(ζ)ρ(θ)[1 + (ρ̇(θ)/ρ(θ))2 + (ϕ̇(ζ)ρ(θ))2]1/2 dθ dζ =
S

L2

or, in the class of slender bodies, this restriction takes the form
1∫

0

ϕ(ζ) dζ

2π∫
0

[ρ2(θ) + ρ̇2(θ)]1/2 dθ =
S

L2
; (1.3)
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— on the area of the base cross section of the body Sb,
2π∫
0

ρ2(θ) dθ =
2Sb
L2

; (1.4)

— on the perimeter of the base cross section P ,
2π∫
0

√
ρ2(θ) + ρ̇2(θ) dθ =

P

L
. (1.5)

We also consider an additional restriction on the limiting value of the wave drag of the body. The wave-drag
functional D has the form [18]

D

q
=
∫ ∫
S

(−〈n, ez〉)3 ds, ds =
r

〈n, er〉
dθ dz,

where q is the dynamic pressure. Then, in the class of slender bodies, the restriction on the body drag yields the
inequality

1∫
0

ϕ(ζ)ϕ̇3(ζ) dζ

2π∫
0

ρ6(θ) dθ
ρ̇2(θ) + ρ2(θ)

6
D∗
qL2

, (1.6)

where D∗ is a prescribed limiting value of the wave drag.
2. Optimum Longitudinal Contour. We consider the following optimization problem: among smooth

functions ϕ(ζ) that describe the longitudinal contour of the body and satisfy the boundary conditions ϕ(0) = 0 and
ϕ(1) = 1, we have to find a function that minimizes the heat-flux integral J1(ϕ) (1.1).

It should be noted that the problems of finding optimum longitudinal contours of bodies from the viewpoint
of minimization of radiative heating of the surface are considered in many papers (see the review in [2]). Therefore,
we mention only the main aspects of solving the optimization problem posed.

The function ϕ(ζ) minimizing the functional J1(ϕ) should satisfy the Euler equation

(1−m)ϕ(ζ)ϕ̇m(ζ) = C (C = const),

which, with allowance for the boundary conditions, has the solution

ϕ(ζ) = ζm/(m+1). (2.1)

The resultant curve satisfies the Legendre condition. The value of the functional at the extreme line is determined
by the formula Jmin

1 (ϕ) = [m/(m+ 1)]m.
Taking into account (2.1), we obtain the following isoperimetric conditions on the body volume V (1.2) and

on the area of the wetted surface S (1.3), as well as the restriction on the wave drag of the body (1.6):
2π∫
0

ρ2(θ) dθ = V∗, V∗ =
V

L3

2(3m+ 1)
m+ 1

= const; (2.2)

2π∫
0

√
ρ2(θ) + ρ̇2(θ) dθ = S∗, S∗ =

S

L2

2m+ 1
m+ 1

= const; (2.3)

2π∫
0

ρ6(θ) dθ
ρ̇2(θ) + ρ2(θ)

6 CD∗ , CD∗ =
D∗
qL2

(m+ 1)2(m− 1)
m3

= const. (2.4)

3. Optimum Transverse Contour. The problem of the optimum transverse contour of the body is
formulated as follows. Among piecewise-smooth functions ρ(θ) that satisfy the condition of the closed contour ρ(0) =
ρ(2π), isoperimetric conditions on the volume V∗ (2.2) and on the area of the wetted body surface S∗ (2.3), and
also the restriction on the limiting admissible value of the wave drag CD∗ (2.4), we have to find a function that
minimizes the integral of the radiative heat flux J2(ρ) (1.1).
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To study the problem posed, we use the approach suggested in [18]. We write the Lagrangian functional

J(ρ) =

2π∫
0

F (λ1, λ2, λ3, ρ, ρ̇) dθ, (3.1)

where F (λ1, λ2, λ3, ρ, ρ̇) = ρ2m(θ)/[ρ2(θ) + ρ̇2(θ)](m−1)/2 + λ1ρ
2(θ) + λ2

√
ρ2(θ) + ρ̇2(θ) + λ3ρ

6(θ)/(ρ2(θ) + ρ̇2(θ))
(λ1, λ2, and λ3 are indeterminate constant Lagrangian multipliers).

It should be noted that the structure of the objective functional (3.1) remains unchanged if, instead of the
isoperimetric conditions on V∗ (2.2) and S∗ (2.3), we consider isoperimetric conditions on the area of the base
cross section of the body Sb (1.4) and its perimeter P (1.5), respectively. It follows from Eqs. (1.4), (1.5), (2.2),
(2.3) that slender bodies with an optimum longitudinal contour (2.1) have the following relations of their geometric
characteristics:

S∗ = P/L, Sb = V∗L
2/2. (3.2)

The function that is the solution of the initial variational problem should satisfy the following conditions:
— Euler equation for the Lagrangian functional (3.1)

F − ρ̇Fρ̇ =
ρ2m(θ)[ρ2(θ) +mρ̇2(θ)]
[ρ2(θ) + ρ̇2(θ)](m+1)/2

+ λ1ρ
2(θ) +

λ2ρ
2(θ)√

ρ2(θ) + ρ̇2(θ)

+ λ3
ρ6(θ)[ρ2(θ) + 3ρ̇2(θ)]

[ρ2(θ) + ρ̇2(θ)]2
= C = const; (3.3)

— condition of transversality that agrees with the end conditions

Fρ̇

∣∣∣
0

= Fρ̇

∣∣∣
2π

= 0,
(3.4)

Fρ̇ = ρ̇(θ)
( (1−m)ρ2m(θ)

[ρ2(θ) + ρ̇2(θ)](m+1)/2
+

λ2√
ρ2(θ) + ρ̇2(θ)

− λ3
2ρ6(θ)

[ρ2(θ) + ρ̇2(θ)]2
)

;

— necessary Legendre condition

Fρ̇ρ̇ =
(m− 1)ρ2m(θ)

[ρ2(θ) + ρ̇2(θ)](m+3)/2

(
mρ̇2(θ)− ρ2(θ) +

λ2

m− 1
[ρ2(θ) + ρ̇2(θ)]m/2

ρ2m−2(θ)

+
2λ3

m− 1
[ρ2(θ) + ρ̇2(θ)](m−3)/2

ρ2(m−3)(θ)
(3ρ̇2(θ)− ρ2(θ))

)
> 0; (3.5)

— condition of supplementary slackness

λ3

( 2π∫
0

ρ6(θ) dθ
ρ̇2(θ) + ρ2(θ)

− CD∗
)

= 0; (3.6)

— Weierstrass–Erdmann conditions at corner points, which may be of two types: some points have arbitrary
positions, and other points lie on the circumferences ρ = ρ0 and ρ = ρf (ρ0 and ρf are the end radii of the transverse
contour). In the first case, we obtain the relations

∆[F − ρ̇Fρ̇] = 0, ∆[Fρ̇] = 0, (3.7)

where ∆[ · ] is the difference in values calculated on the right (plus sign) and on the left (minus sign) of the corner
point θc. Conditions (3.7) are satisfied for ρ̇+(θc) = ±∞, ρ̇−(θc) = ∓∞, and λ2 = 0. In the second case, only
the first condition of (3.7) remains, which reduces to the relation ρ̇+(θc) + ρ̇−(θc) = 0. In addition, it follows from
conditions (3.7) that the value of the constant C remains the same on all arcs of the extreme line.

Hence, any two neighboring arcs that form the extreme-line cycle are symmetric with respect to the ray
passing through the corner point. Then the optimum transverse contour may consist of an integer number n of
symmetric cycles, each occupying the angle 2π/n. In this case, the condition of the closed transverse contour is
satisfied. In analyzing the shape of the extreme line consisting of symmetric cycles, it is sufficient to study an arc
that forms a half of the cycle.
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With allowance for the above said, the functional of the problem and the restrictions on the body shape take
the following form:

J2(ρ, n) = 2n

π/n∫
0

ρ2m(θ) dθ
[ρ2(θ) + ρ̇2(θ)](m−1)/2

→ min; (3.8)

2n

π/n∫
0

ρ2(θ) dθ = V∗; (3.9)

2n

π/n∫
0

√
ρ2(θ) + ρ̇2(θ) dθ = S∗; (3.10)

2n

π/n∫
0

ρ6(θ) dθ
ρ̇2(θ) + ρ2(θ)

6 CD∗ . (3.11)

The radii at the end points θ0 = 0 and θf = π/n are assumed to be free. The Lagrangian functional for problem
(3.8)–(3.11) is

J(ρ, n) = 2n

π/n∫
0

F (λ1, λ2, λ3, ρ, ρ̇) dθ,

where the integrand F (λ1, λ2, λ3, ρ, ρ̇) is determined by Eq. (3.1).
We consider the necessary conditions of the extremum of the functional J(ρ, n). The conditions to be

satisfied on the extreme-line arc are the first integral of the Euler equation (3.3), which is studied together with
the conditions of transversality (3.4) at the end points θ0 = 0 and θf = π/n and the condition of supplementing
slackness (3.6).

The optimizing condition on the number of extreme-line arcs reduces to vanishing of the derivative of the
integral J(ρ, n) with respect to the parameter n [18] (n is assumed to be real):

π/n∫
0

F dθ − π

n
[F ]π/n = 0. (3.12)

Among the solutions of Eq. (3.12), only the integer values of the parameter n that have a physical meaning are
chosen. In the general case, the use of this approach can lead to the loss of possible solutions or to the absence
of integer solutions of Eq. (3.12). However, as is shown below, the objective functional J(ρ, n) has no explicit
dependence on the parameter n. Hence, we have dJ/dn = 0 for all (including integer) values of n. Note that the
use of the additional condition (3.12) allows obtaining analytical solutions of the initial variational problem, which
satisfy both the necessary conditions of the extremum of the functional (3.3)–(3.7) and restriction (3.12).

Taking into account (3.4) and introducing the notation Φ = ρ̇Fρ̇, we integrate the Euler equation (3.3) on
the interval [0, π/n]:

π/n∫
0

F dθ −
π/n∫
0

Φ dθ =

π/n∫
0

C dθ ≡ π

n
[F ]π/n. (3.13)

From Eqs. (3.12) and (3.13) and the condition of transversality (3.4), it follows that the optimum transverse contour
should satisfy the conditions

π/n∫
0

Φ dθ = 0, Φ
∣∣∣
0

= Φ
∣∣∣
π/n

= 0. (3.14)

The following cases should be considered:
(a) the function Φ is identically equal to zero at all points of the segment [0, π/n];
(b) the function Φ changes its sign at the segment [0, π/n] and, hence, equals zero not only at the ends

θ0 = 0, θf = π/n but also in intermediate points.
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Fig. 1. Behavior of the function Φ on the plane (ρ, ρ̇).

In case (a), we obtain the relations

ρ̇(θ) = 0; (3.15)

(1−m)ρ2m(θ)
[ρ2(θ) + ρ̇2(θ)](m+1)/2

+
λ2√

ρ2(θ) + ρ̇2(θ)
− 2λ3ρ

6(θ)
[ρ2(θ) + ρ̇2(θ)]2

= 0. (3.16)

If the restriction on the wave drag (3.11) on the extreme line is fulfilled as a rigorous inequality, the condition
of supplementing slackness (3.6) yields λ3 = 0 (i = 1). If λ3 6= 0 and λ2 = 0 (i = 2), the problem without the
restriction on the area of the body surface is considered, where the condition of the wave drag (3.11) is fulfilled as
a rigorous equality. For the cases considered, Eq. (3.16) reduces to the form

Ψ = ρ̇2(θ) + ρ2(θ)− a2
i ρ

4(θ) = 0, i = 1, 2,
(3.17)

a1 = [(m− 1)/λ2]1/m, a2 = [(1−m)/(2λ3)]1/(m−3).

Considering the function Φ on the plane (ρ, ρ̇) (Fig. 1), we can draw the following conclusions. Depen-
dences (3.15) and (3.17) satisfy the Legendre condition (3.5) for ρ 6 ρcr (ρcr = 1/ai and i = 1, 2) and ρ > ρcr,
respectively. In this case, the function Φ is positive on the left of the line Ψ = 0 and negative on the right of it.
Assuming that the end points of the extreme line (θ0 = 0 and θf = π/n) are located on the line Φ = 0 in an
arbitrary manner, we have to study three classes of bodies.

4. Transverse Contour of Bodies of Class I. Let the end points of the extreme line lie on the line (3.15)
[ρ̇(0) = ρ̇(π/n) = 0]. Since the solution of the differential equation (3.15) has the form

ρ(θ) = C1, (4.1)

the optimum body of class I is a body of revolution. The constant C1 is determined from the prescribed isoperimetric
conditions: C1 =

√
V∗/(2π) in the case of a prescribed volume of the body (3.9) and C1 = S∗/(2π) in the case

of a prescribed area of the side surface of the body (3.10). For the isoperimetric conditions (3.9) and (3.10) to be
satisfied simultaneously, the input parameters of the problem should be related as V∗ = S2

∗/(2π).
The integral of the radiative heat flux for the transverse contour (4.1) is Jmin

2 = 2πCm+1
1 .

5. Transverse Contour of Bodies of Class II. We consider a class of bodies where both end points
lie on the curve Ψ = 0 (Ψ|0 = 0 and Ψ|π/n = 0). In this case, the transverse contour of the body satisfies the
differential equation (3.17) whose solution is

ρ(θ) = 1/(ai cos (θ + C2)) (C2 = const, i = 1, 2). (5.1)

Expression (5.1) is the equation of a straight line, which is the side of a star-shaped transverse contour of the body.
We find the relation of the unknown parameters ai and C2 with the prescribed geometric characteristics of the
body.

1. We study the case i = 1 where the volume V∗ (λ1 6= 0) and the area of the wetted surface of the body
S∗ (λ2 6= 0) are known, and the condition on the limiting wave drag of the body (3.11) is fulfilled as a rigorous
inequality (λ3 = 0). From the isoperimetric conditions (3.9) and (3.10), we obtain

a1 = S∗/V∗, S2
∗/V∗ = 2n(tan(π/n+ C2)− tanC2). (5.2)
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Fig. 2. Optimum shapes of bodies of class II [n = 6 and S2
∗/V∗ = 3n tan(π/n)] for m = 3 (a) and 10 (b).

The optimizing condition (3.12) for the number n of extreme-line arcs reduces to[
m
( λ2

m− 1

)(m−1)/m

+ λ1

]{ π/n∫
0

ρ2(θ) dθ − π

n
ρ2
(π
n

)}
= 0.

The expression in braces cannot vanish, since thereby the function ρ(θ) does not satisfy the Euler equation (3.3).
Hence, we have the following relation between the Lagrangian multipliers:

λ1 = −m(λ2/(m− 1))(m−1)/m, λ2 = (m− 1)(V∗/S∗)m. (5.3)

Then, condition (3.12) is satisfied for an arbitrary number of cycles n, and the integral for the radiative heat flux
(3.8) is independent of n:

Jmin
2 = S1−m

∗ V m∗ . (5.4)

Hence, the radiative heating of the surface is identical for optimum star-shaped bodies with different number of
rays but identical values of the parameters m, S∗, and V∗.

By means of simple substitution, it can be shown that the obtained solutions (5.1)–(5.3) satisfy the initial
Euler equation (3.3), condition of transversality (3.4), and Legendre condition (3.5). It follows from condition (3.5)
that bodies of class II are obtained for S2

∗/V∗ > 2n tan(π/n). In the case of a rigorous equality, the equation of the
body shape reduces to the relation

ρ(θ) = 1/(ai cos θ) (C2 = 0), (5.5)

which is the side of a regular polygon described around the circumference ρ = 1/ai. As n→∞, we have S2
∗/V∗ → 2π,

and the optimum transverse contour is a circumference.
2. We consider the case i = 2, where the body volume V∗ (λ1 6= 0) and the restriction on the wave drag of

the body (λ3 6= 0) are prescribed, and the area of the body surface S∗ is free (λ2 = 0). Then, the isoperimetric
conditions (3.9) and (3.11) yield

a2 =
√
V∗/CD∗ , V 2

∗ /CD∗ = 2n(tan(π/n+ C2)− tanC2).

The optimizing condition on the number of cycles of the extreme line (3.12) is satisfied for all n for

λ1 =
m− 3

2

(CD∗
V∗

)(m−1)/2

, λ3 =
1−m

2

(CD∗
V∗

)(m−3)/2

. (5.6)

Hence, the minimum value of the functional of the radiative flux on the extreme line is independent of the number
of cycles and is calculated by the formula

Jmin
2 = V∗

(3−m)/2C
(m−1)/2
D∗

. (5.7)

Bodies of class II with prescribed V∗ and CD∗ are obtained with the following restriction on the input parameters
of the problem: V 2

∗ /CD∗ > 2n tan(π/n).
Based on the resultant analytical expressions, we calculated the optimum shapes of bodies of class II in a

wide range of input parameters. Figure 2 shows the star-shaped configurations with restrictions on the geometric
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Fig. 3. Dynamics of the transverse contour of bodies of class II for n = 6 (a) and 8 (b) and
S2
∗/V∗ = 2n tan(π/n) (contour 1), 3n tan(π/n) (contour 2), and 5n tan(π/n) (contour 3).

Fig. 4. Longitudinal (a) and transverse (b) contours of bodies of class II (n = 5 and m = 5) for
V 2
∗ /CD∗ = 5n tan(π/n) (contour 1) and 2n tan(π/n) (contour 2).

characteristics S∗ and V∗ for n = 6, m = 3 and 10, and S2
∗/V∗ = 3n tan(π/n). The radiation parameter m affects

only the longitudinal contour of the body; the shape of the transverse contour is independent of m.
The dynamics of the transverse contour of the body for n = 6 and 8 and various values of S2

∗/V∗ is shown
in Fig. 3. It is seen from Fig. 3 that, for S2

∗/V∗ → 2n tan(π/n), the ratio of the end radii ρf/ρ0 decreases, and the
cross-sectional shape of the body tends to a regular polygon.

Figure 4 shows the optimum longitudinal (a) and transverse (b) contours of star-shaped configurations in
the case of prescribed V∗ and CD∗ for n = 5, m = 5, and V 2

∗ /CD∗ = 2n tan(π/n) and 5n tan(π/n).
6. Transverse Contour of Bodies of Class III. We consider a class of bodies where the initial point of

the contour lies on the line (3.15) ρ̇|0 = 0 and the end point lies on the line (3.17) Ψ|π/n = 0. Thus, the contour
of class III contains an arc of the circumference and a straight line tangent to the circumference. It follows from
Fig. 1 that the point of transformation of the circumference arc to the straight line corresponds to ρ0 = ρcr ≡ 1/ai
(i = 1, 2) due to the continuity of the contour. Then, the extreme line can be represented analytically as

ρ =
{

1/ai, 0 6 θ 6 εi,
1/[ai cos (θ − εi)], εi 6 θ 6 π/n,

(6.1)

where εi (i = 1, 2) is the angle of junction of the extreme-line arcs, which is determined from the corresponding
isoperimetric conditions: S2

∗/V∗ = 2n[ε1 + tan(π/n − ε1)] and a1 = S∗/V∗ in the case of prescribed V∗ (3.9)
and S∗ (3.10); V 2

∗ /CD∗ = 2n[ε2+tan(π/n−ε2)] and a2 =
√
V∗/CD∗ in the case of prescribed V∗ (3.9) and CD∗ (3.11).

Note, from condition (3.12) on the number of cycles n, it follows that the optimum solutions of Eq. (6.1)
are valid only if the corresponding restrictions (5.3) or (5.6) on the Lagrangian multipliers are satisfied. Thus, the
resultant optimum shapes of bodies of class III satisfy the Euler equation (3.3), the condition of transversality (3.4),
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Fig. 5. Optimum shapes of bodies of class III [n = 3 and S2
∗/V∗ = 1.5n tan(π/n)] for m = 4 (a) and 10 (b).

Fig. 6. Dynamics of the transverse contour of bodies of class III for n = 3 (a) and 4 (b) and V 2
∗ /CD∗ = 2π (contour 1),

1.4n tan(π/n) (contour 2), 1.7n tan(π/n) (contour 3), and 2n tan(π/n) (contour 4).

and the Legendre condition (3.5), as well as the optimizing condition (3.12).
The functional of the radiative heat flux for the extreme line (6.1) is determined by formulas (5.4) or (5.7)

and does not depend on the number of cycles.
Figure 5 shows the optimum shapes of bodies of class III with prescribed parameters S∗ and V∗ for n = 3,

m = 4 and 10, and S2
∗/V∗ = 1.5n tan(π/n). The dynamics of the transverse contour of the body for n = 3 and 4

and various values of V 2
∗ /CD∗ is shown in Fig. 6.

It follows from Figs. 5 and 6 that, for S2
∗/V∗ and V 2

∗ /CD∗ tending to 2n tan(π/n) (εi = 0), the limiting case
of the optimum transverse contour of class III is a regular polygon (5.5). The other limiting case, for S2

∗/V∗ and
V 2
∗ /CD∗ tending to 2π (εi = π/n), is a circumference of radius ρ0 = 1/ai.

7. Discussion of Results. The solutions obtained in Secs. 4–6 correspond to case (a) (see Sec. 3) where
the function Φ is identically equal to zero on the segment [0;π/n]. We study case (b) where the function Φ can
change its sign on the segment [0;π/n] and, hence, equals zero not only at the end of the segment but also at a
finite number of intermediate points.

We consider the above-mentioned classes of bodies:
— for bodies of class I (ρ̇|0 = ρ̇|π/n = 0), the function is Φ ≡ 0 (see Fig. 1) or Φ > 0, which contradicts the

integral condition (3.14);
— for bodies of class II (Ψ|0 = Ψ|π/n = 0) and class III (ρ̇|0 = Ψ|π/n = 0), the function Φ cannot change

its sign on the segment [0;π/n], since this contradicts the fact that the extreme line has an infinite number of
intersections with the line Ψ = 0.
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Fig. 7. Dependence Jopt
2 /Jrev

2 on the radiation parameter m for
S2
∗/V∗ = 10.3923 (1), 8.6603 (2), 6.9282 (3), 6.5818 (4), and 2π (5).

Indeed, the first integral of the Euler equation (3.3) and Eq. (3.17) should be satisfied simultaneously at all
points of intersection. Then, for prescribed S∗, V∗ and S∗, CD∗ , the following relations are valid, respectively:[

m
( λ2

m− 1

)(m−1)/m

+ λ1

]
ρ2(θ) = C,

[3−m
2

( 2λ3

1−m

)(m−1)/(m−3)

+ λ1

]
ρ2(θ) = C. (7.1)

Since the restrictions on the Lagrangian multipliers (5.3), (5.6) are satisfied for bodies of classes II and III, the
factors in square brackets in (7.1) and the constant C (3.3) vanish. Hence, Eqs. (7.1) are satisfied for an arbitrary
value of ρ, and the extreme line has an infinite number of intersection points with the curve Ψ = 0. The proved
statement justifies the validity of the solutions obtained.

Thus, bodies possessing optimum transverse contours from the viewpoint of minimization of radiative heating
can be of four types:

1) bodies of class I (4.1) with circular cross sections (ρ 6 ρcr);
2) bodies of class II (5.1) with star-shaped cross sections [ρ > ρcr, S2

∗/V∗ > 2n tan(π/n), and V 2
∗ /CD∗

> 2n tan(π/n)];
3) bodies of class III (6.1) with star-shaped cross sections and circular inclusions (ρ > ρcr, S2

∗/V∗
∈ [2π; 2n tan(π/n)], and V 2

∗ /CD∗ ∈ [2π; 2n tan(π/n)]);
4) pyramidal bodies with cross sections in the form of regular polygons (5.5), which are subsets of bodies of

classes II and III for S2
∗/V∗ = 2n tan(π/n) and V 2

∗ /CD∗ = 2n tan(π/n).
The coefficients of radiative heating of the transverse contours of bodies of classes II and III depend on the

radiation parameter of the gas m and specified geometric characteristics of the body but do not depend on the
number of extreme-line cycles n. Thus, for bodies of classes II and III possessing identical prescribed parameters m,
S∗, and V∗ orm, CD∗ , and V∗, radiative heating of the surface is identical, and the number of rays is smaller for bodies
of class III. The radiation parameter m affects only the shape of the longitudinal contour of the body ϕ(ζ) (2.1)
and has no effect on the optimum shape of the transverse contour ρ(θ).

The ratios of the coefficients of radiative heating of transverse contours of optimum bodies of classes II
and III Jopt

2 and equivalent bodies of revolution J rev
2 are plotted in Fig. 7 as functions of the radiation parameter m

for various values of S2
∗/V∗. An equivalent body of revolution is understood as a body of revolution that has the

same length L (L = 1) and volume V∗ as an optimum body. For example, for n = 4, curves 1 and 2 correspond to
bodies of class II and curves 3–5 to bodies of class III; for n = 6, curves 1–3 correspond to bodies of class II and
curves 4 and 5 to bodies of class III.

It follows from calculations that the use of optimum bodies allows a significant decrease in radiative heat
flux to the body surface as compared to bodies of revolution with similar geometric characteristics (up to 50% for
bodies of class III and up to 98% for bodies of class II). The greater the values of the radiation parameter m and
the parameters S2

∗/V∗ and V 2
∗ /CD∗ , the stronger the effect.
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Note, however, the results obtained for star-shaped bodies of class II with a large number of cycles n should
be treated cautiously, since the transverse contour of the body has deep troughs between two neighboring cycles,
where the use of Eq. (1.1) for the radiative heat flux is physically unjustified. Therefore, it is necessary to further
refine both the initial physical model for radiative heat transfer between bodies and troughs and the body shapes
obtained by means of experimental studies and numerical calculations by more accurate models of spatial heat
transfer.
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